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Efficient Evaluation of Reaction Integrals in the
EFIE Analysis of Planar Layered Structures
With Uniaxial Anisotropy

Francisco MesaMember, IEEEGonzalo Plaza, and Francisco MediS&nior Member, IEEE

Abstract—This paper presents an efficient implementation of
the electric-field integral-equation (EFIE) method to deal with
planar anisotropic layered printed structures. A convenient treat-
ment of the kernel of the integral equation gives rise to reaction
integrals that only involve quasi-singularities and R—1-type sin-
gularities. When the well-known Rao-Wilton—Glisson triangular
basis functions are used in conjunction with the Galerkin’'s
method, closed-form expressions are found for the singular parts
of the self-reaction integrals, as well as for the inner convolution Fig. 1. Planar anisotropic layered structure under study.
integrals of the remaining singular/quasi-singular reaction in-
tegrals. Thus, the present procedure sets the EFIE method as a
competitive alternative to other formulations.

guasi-singular) parts. Since the numerical computation of the
reaction integrals related to the regular part of the TEFGD is
rather straightforward, this paper will focus on the computation
of the reaction integrals associated with the nonregular parts of
the TEFGD. In this objective, part of the extensive work done
I. INTRODUCTION in the past can be advantageously applied, although new inte-

HE analysis of scattering, radiation, and propagation gyals have to b_e treated. Thus, it has been found that the sin-

planar layered structures with printed conductors is oftélylar self-reaction double integrals can be computed by means
carried out by means of the mixed-potential integral-equati@_rﬁ clqsed—form expressions. For the. remaining nonregular reac-
(MPIE) method [1]-[4]. Although a pure electric-field integral-t'on mtegra!s, closed—fqrm expressions are only fpund for the
equation (EFIE) scheme has been also used [5]-[7], the supgg[r_espondlng convolution products, although their smooth be-
ority of the MPIE is commonly accepted because of the scafd@Vior allows for the use of low-order quadrature formulas to
nature of its potentials and the lower order of the singulariti@§rform the exterior integral. Numerical examples will be fi-
involved in this method [8]. However, it was recently shown iff@lly Shown to check the accuracy and efficiency of the present
[9] that the transverse electric-field Green's dyadic (TEFGD?)pproach when applied to isotropic and anisotropic structures.

of a layered structure with uniaxial anisotropy can also be de-
rived from two scalar potentials and that only singularities of the
R~! type have to be handled to solve the EFIE. Specifically, It was shown in [9] that the spectral-domain TEFGD for a
the application of potential-based techniques to deal with thgerally open-layered structure with uniaxial anisotropy as that
R—3-type singularity originally appearing in the TEFGD makeshown in Fig. 1 can be written as

it possible to express the electric field produced by an elemen- . B o

tary current source in terms of functions (and their derivatives) Gk, &) =Qk,) L +T(k,) [kakp - It} Q)
showing at mosf2—-type singularities. In principle, this treat- . )

ment would make the EFIE method somewhat equivalent to th&ierek, and¢ are the radial and angular spectral variables, re-
MPIE method, although to assure this equivalence, it should $Rectively, and(k,), T(k,) are radial spectral functions that
demonstrated that the EFIE reaction integrals can be compuféd be computed starting from any of the algorithms developed
efficiently. This task will be the main purpose of this studyn the literature, e.g., [10]-[14]. (In the following, the spec-
First, it will be carried out as a convenient decomposition dfal/spatial nature of the different quantities will be apparent

the TEFGD to separate the regular and nonregular (singular 43@king at the corresponding variables.) Each substrate of the
layered medium can be uniaxial dielectric and, therefore, char-

_ _ _ acterized by the following permittivity dyadic:
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The corresponding spatial counterpart of (1) is found to be

GR) =5{G (.0 }
=50{Q (k) YT+ $2{T (k) } [T, - 2RR] (3

vertex o

where S,,,{-} stands for the Fourier-Bessel transformnath
order andR = r — r’ denotes the vector from the source to the
field point. Fig. 2. Some geometrical quantities related to trianglgandT,.

A convenient decomposition of (3) for further computational
purposes requires a previous identification of the singularitiﬁsaO
and main quasi-singularities of this dyadic. This task was dopeea
in [9], which suggests for us to now write (3) as

—Wilton—-Glisson (RWG) triangular basis functions [1],
ds to reaction integrals of the type

_ _ _ 1 _
G(R) = Cuo res(R) + GreglR) @ 2= | pate) [ | @@, dS’] 4s. (11)
@ ,8 P q
where (See Fig. 2 for a description of geometrical quantities involved;
— = — h% is the height of triangl€;, measured from vertex.) Con-
Gino—reg(R) = G(-1) (R) + Gerst(R) ®) sidering now the decomposition of the TEFGD into its so-called
with regular and nonregular parts, shown in (4), (11) will be accord-
ingly written as
: I, —2I' (L — RR Pq Pq Pq
ral Jw 7' =7 Z . 12
G(—l)(R) = — 4::0 (R ) (6) af aB,no—reg + af,reg ( )
G (R) = — 1 Due to the smooth behavior €,.,(R), Z%% .., double in-
elst A jweotest tegrals are not expected to raise numerical problems, thus al-
lowing for an accurate enough numerical integration by means
VN;l _ _2%5eq . ;; ) of low-order quadrature formulas without much computational
R 14eeq VR?+ H? effort. Anyhow, if the DCIT was used to expaWé..., the cor-

@) responding reaction integrals could be eventually computed in
closed form [18].

In this paperG_,(R) will account for theR—*-type singular The nonregular part of (12) can be conveniently expressed as

term andG....(R) for only the two most significant electro- <
A

static-type terms, namely, the hypersingular3-type term zZ = 57 | O+ T%) (13)

afd,no—reg ~— 1P 14
(which was also discussed in [15] in a different context) plus hahy

the quasi-singular first dipole-image term [9]. In (6) and (7},\/h QP h kerneG R
H, denotes the vertical distance at which the first physical Bre%as NAS as ket (n(R)

dipole image is located and - jwpo -
a8 = A / o\l
€eq =/ Et,NEY,N 8) g .
1+4e. = = Aan
ot :% ) - /T =L -20 (L -RR)] -pyg(r’)dS’] ds
r :seq(2 — EyQ,N + Eeq) (10) (14)
8Eeff

and Tf;?@ is associated withG.i,(R). The presence of the
where subindexV denotes the layer upon which the metallizadouble nabla operator in (7) makes it possible to expi&¥s

tion is printed. as

Once the singularities and most significant quasi-singularity
of the TEFGD have been properly extracted oGt,..(R) T = —/ p.(r) -V, o%4(r)dS (15)
clearly shows amoothalthough oscillatory behavior that could ' T '

be eventually well fitted by a series of complex exponential§yere
after properly applying the discrete complex-image technique

(DCIT) [16], [17]. P(r) = —
/ 4w jweQE et
[ll. REACTION INTEGRALS / 1 2€eq 1 / N
x 5~ Vi - ps(r')dS
The solution of the EFIE by means of Galerkin's 7, [ 1+ee /R4 H} '

method, when using the well-known and very flexible (16)
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can be seen as the electrostatic potential due to a surface charge
density -V - pz/jw) and its corresponding first image. Ap-
plying now a Gauss divergence theorem (taking into account
thatV, - ps(r) = 2), (15) can be transformed into

1
=L
' TIWEE fE
/' / dsds’ 2€eq / / dsds’
7, Jr, R L+eeq Jg, J7, /R + H? Fig. 3. Geometrical quantities associated with integkal.

17

40 seven-point integration formula [20] (at least three significant
in addition to other contour integrals that finally do not condigits were found for the worst numerical case involving adja-
tribute. cent triangles; a lower order quadrature formula can be used for

Looking at (14) and(17), it can be observed that three difiistant triangles).

ferent types of integrals have to be dealt with. Their efficient For double integra”§l)’ no closed-form expression was
computation will be discussed in the following sections. found by the authors for any case. Nevertheless, the following
closed-form expression was obtained for the inner convolution
integral /. il) :
In this case, the integral to be solved is shown in (14), which

A. Integrals Associated t6_1)

3

can be now conveniently written as
y it 17 =3 [A(af) - Ae7)] (24)
Tw =
R (18) .

where (according to the notation given in Fig. 3) the summation
where is extended to the three sides of the triangle involved and

1 = /12 2 2 :
I = . —[(1 =4I ) d; — H{sin" o; + Ry sinoy
( 1) /TP pOé /I‘ R [( ) t A (Oéz) — —HlaZ+ROZ ln 1

! — . 2 d? — H? sin? o; — R,,; sin q;
+2r (T, + RR)] -p(@ds'} ds. (19) V
This latter integral can be expressed in terms of the auxiliary
integralsi; and; defined in [19] as

H
+H; arcsin <71 sin ai> (25)

with
I_y=(1—4D)L + 2T (20) R %,

SillOc;tI ZRﬂ: di:\/Rgi-i-HlQ.

1 io) can be directly computed from the above expres-

Therefore, I_;y can be efficiently computed following the
scheme discussed by Arcioat al. [19], which made use of Clear]
certain integrals previously solved in [1] and [20] or moré early,

recently in [21]. sions after taking?; = 0.) The smooth behavior dffll) again
causes that integral (23) can be efficiently computed with a
B. Integrals Associated tGi.js; low-order integration formula for both coincident and nonco-

Expression (17) is composed of two different integrals assO® ident triangles.
ciated with the electrostatic-type source and first image terms VN R
of the TEFGD, respectively. This suggests to express (17) as - NUMERICAL RESULTS

The above scheme has been used to develop a computer

TP = —.; [Il(o) + 11(1)} (21) code to deal with general planar anisotropic layered structures.
' TIWE0E et This code has been checked with previously published data for
with different isotropic/anisotropic structures, giving satisfactory
dsds’ results.
Ifo) :/ / == / Iio)(r)dS (22) As a first example, Table | shows our results in comparison
Tp I Ty ‘ To with those in [22] for the resonant frequengy of the funda-
L _ dSds’ _ (1) mental resonant mode of a circular disk. The numerical data
I I, (r)dS. (23) . ; o
1, JT, \/R?> + H? T, provided in [22] (f*™ in Table 1) were computed by means

of an EFIE method solved in the spectral domain by using

Integral{”’ can be computed following the scheme given iChebyshev-polynomials full-domain basis functions [22].

[19], where a complete closed-form expression is given for thhis method was specifically designed to deal with circular
particular cas€, = T,. When1,, # 1T, the smooth behavior resonators and has proven to be very accurate. The remaining
of the closed-form expression found tZiP) (see further) allows data in Table | were obtained from the frequency associated

for an accurate numerical integration over the triangle usingaath the dip in the reflection coefficient when the resonator is



MESA et al. EVALUATION OF REACTION INTEGRALS IN EFIE ANALYSIS OF PLANAR LAYERED STRUCTURES

TABLE |
RESONANT FREQUENCY OF THEFUNDAMENTAL RESONANT MODE OF A
CIRCULAR Disk WITH RADIUS = « PRINTED ON A GROUNDED ISOTROPIC
DIELECTRIC SUBSTRATE ¢,. = 2.43, h = 0.49 mm. THE NUMERICAL
RESULTS OFTHIS PAPER (f %) ARE COMPARED WITH THE FOLLOWING
DATA PROVIDED IN [22]: EXPERIMENTAL DATA (fEXF), NUMERICAL
DATA (fXVUM), AND DATA OBTAINED WITH ELECTROMAGNETIC
SIMULATOR ENSEMBLE (fEV%)

a/h [ £ 1™ LAY
8.08 13.1 | 13.2 | 134 || 13.1
12.02 || 896 | 9.07 | 9.17 || 9.03 [
16.33 || 6.81 | 6.76 | 6.83 || 6.75
20.33 || 547 | 546 | 553 || 546
(2]
°r 7 Nl [3]
5 | J 'l: ll\
, S| AT
=10 "’7 s ‘V \ [4]
—~ 15 [ . N
o i : i ~ &
> 2 | -zl\ < N “ass.
87 V) S . l [5]
] F P 5
.‘é 25 [ o, :' |
':? -30 Sl |
m TR o
-40 %ﬁJL £ ' B
45 L. ‘ et IV (7]
8 8.5 9 9.5 10 10.5 b}
Freq (GHz)
( (8]

Fig. 4. Return and insertion losses of coupled resonator bandpass filter on
anisotropic Epsilam-1Q:; = 13, ¢, = 10.3. Solid lines: our results. Dashed 9]
lines: results by Draket al.[23].

(10]
capacitively feed by means of a $Dmicrostrip line. It can be

seen that the agreement of our results with the numerical ones
in [22] is very good. A good agreement with experimental anom]
“Ensemble” data is also observed.

A second example of comparison with an anisotropic struct'2]
ture is shown in Fig. 4, which shows the scattering parameters of
a microstrip bandpass filter containing two microstrip gap dis{13]
continuities when the substrate is anisotropic Epsilam-10 [23].
Our data agree reasonably well with those reported in [23] (the
error of 1% in the resonant frequency can be attributed to thg4j
boxed nature of the structure analyzed in [23]). To give an idea
of the computational effort of the present formulation, the CPU5
time required by a PC Pentium 233 MHz (64 MB of RAM) for
filling the Galerkin matrix in this particular structure has taken
approximately 180 s when a large number of RWG basis func®!
tions (850) are used. For practical purposes, good enough results
may be obtained with less basis functions. [17]

V. CONCLUSIONS [18]

An efficient scheme to compute the reaction integrals[19]
involved in the application of Galerkin's method to solve the
EFIE of planar anisotropic layered printed structures has been
presented in this paper. Our proposed EFIE scheme makes use
of a convenient treatment of the singularities and quasi-singJ-zo]
larities of the TEFGD that leads to reaction integrals similar to
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those found in the MPIE method. Closed-form expressions can
be used to compute the singular self-reaction double integrals.
The inner convolution integrals of the remaining singular and

quasi-singular reaction integrals can be also obtained in closed
form. As a consequence, the present formulation of the EFIE
makes this method as accurate and efficient as some other
alternative methods for this kind of problem.
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